responsive web templates

Top

      Hyperlapse is a new exposure technique in time-lapse photography. It needs to take pictures one by one and take a lot of time in the traditional way. Now we use camera to record long high quality videos and speed up them; however, if the video is shacking, the speed-up process will accentuate the unstable motion, resulting in a nauseating jumble.
Our goal is the hyperlapse videos stabilization. We present an algorithm for choosing the stable frame to replace the target speed-up frame, which is unstable. Our approach use the frame selection technique, we calculate the transformation cost to estimate if the frame is stable or not, by using frame matching for each video frame. Then we use our frame selection method based on transformation cost, this method will consider the transformation cost and target speed-up to make sure our hyperlapse videos is smoothing and the best match a desired target speed-up.
We will compare our result with other hyperlapse method by estimating the transformation of different directions for hyperlapse video, to prove our approach can make the hyperlapse video smoother.(Read More)
        高動態縮時攝影(Hyperlapse)是縮時攝影中的一種新興曝光技術,初期都是透過逐格拍攝單張影像來製作,過程相當費時。隨著錄影設備與高畫質技術的發展,現在許多使用者都普遍透過快轉預錄好的長時影片來製作,然而縮時的過程中會放大影片原本就存在的晃動,過度晃動的影片會使得觀賞者覺得頭暈和不舒服。
        透過影片縮時的特性,縮時倍率決定了哪些畫面會被保留下來,但被挑選的畫面可能是晃動過大的畫面,進而造成常用的影片穩定方法無法有效處理的主要原因。在本篇研究中,我們提出了一種新的畫面選取(Frame Selection)方法來提升影片穩定程度。我們先找出畫面彼此之間匹配(Frame Matching)的資訊,並計算影像轉換成本(Transformation Cost)來評估各畫面的晃動幅度,之後使用畫面選取的方式保留轉換較小的畫面,取代原本由縮時倍率所選取的各畫面來達到減少影片晃動的效果,使得在我們使用影片穩定方法之前有更好的輸入影片。此外,我們的畫面選取方式可以有效地保持我們輸出影片的實際縮時倍率接近於我們預期的縮時倍率。
        我們會與之前存在的演算法做比較,利用影片畫面之間X方向、Y方向與旋轉角度的轉換變化量程度大小來表示所提方法確實優於以往的演算法。(閱讀更多)